Mai 24

Wie hier im Blog schon beschrieben, habe ich mir mit einem Pi A einen kleinen Statusscreen gebastelt, der sich immer dann anschaltet, wenn jemand in die nähe des Pi’s kommt. Realisiert wurde das mit der PiCam – basierend auf Helligkeitsänderungen beim Snapshot. Soweit so gut. Seit 2 Monaten hängt sich der olle Pi jedoch regelmässig auf. So schlimm, dass ich Ihm einen crontab-Eintrag verpasst habe, mit dem er jede Nacht neu bootet.

Zeit der Sache mal auf den Grund zu gehen. Das Problem war: Zu wenig RAM. Der Pi A hat gerade 256MB davon (eigentlich mehr als genug, für soetwas). Dummerweise hängt in PiCam direkt an der GPU des kleinen Rechners. Was bedeutet, dass man dem Ding in der /boot/config.txt den Parameter gpu_mem=128 mitgeben muss. Heisst: 128MB für die GPU (drunter funktioniert die cam nicht) und 128MB für das OS. Sofern man nun nicht eine extraschlanke Distribution mit busybox und dem ganzen Small-Mem-Footprint-gedönse nutzt, ist das verdammt mau. Erst recht mit der extrem aufgeblasenen Raspianedition.

Also mussten Lösungsansätze her. Die Cam mit weniger als 128MB GPU-RAM zu betreiben funktioniert also schon mal nicht. Dann halt komplett anders.  Für gerade mal 1,10 Euro/Stück gibt es bei Amazon PIR-Sensoren. PIR steht für Pyroelektrische Passive Infrarot Sensoren. Die Dinger, die man aus den Bewegungsmeldern an Aussenlampen kennt. Das besondere an diesen PIRs ist, dass sie out-of-the-box mit dem Pi über GPIO spielen können.

Obwohl das Chinaware ist, ist es relativ gut dokumentiert. In dieser Grafik findet sich alles, was man wissen muss:

Wir sehen zwei Potentiometer, mit denen man die Empfindlichkeit und eine Art „Nachlaufwert“ einstellen kann. Den Timer stellt man am besten auf „0“ (Anschlag ganz links), das „Distanz“-Poti nach Gusto. Nun zum elektrischen:

  • VCC bei dem Ding ist 5V – der kommt also an PIN2 des GPIO’s (+5V OUT)
  • GND auf GND – PIN 6
  • OUT ist der PIN, der „HIGH“ wird, wenn sich was vor dem Sensor bewegt. Und coolerweise spuckt das Ding ca. 3,3V aus – also genau richtig für den GPIO. Den hängen wir an GPIO18 (PIN 12)

Hier eine Übersicht der GPIO-PINs des raspis:

Nach dem das nun alles Erledigt ist, geht es zum simpleren Teil. Der Software. Ich habe das ganze, wie bereits beim Cam-Script in Python realisiert:

#!/usr/bin/python
import subprocess
import os
import time
import RPi.GPIO as io
from datetime import datetime
delay=60
monitor='on'
pir_pin = 18
io.setmode(io.BCM)
io.setup(pir_pin, io.IN)         # activate input

def turnMonitorOn(extrarg):
  global monitor
  monitor='on'
  subprocess.call("/usr/bin/screen.sh on "+extrarg, shell=True)

def turnMonitorOff(extrarg):
  global monitor
  monitor='off'
  subprocess.call("/usr/bin/screen.sh off "+extrarg, shell=True)
   
# Reset last capture time
lastCapture = time.time()
# added this to give visual feedback of camera motion capture activity.  Can be removed as required

while True:
  time.sleep(0.5)
  if io.input(pir_pin):
    lastCapture = time.time()
    if (monitor == 'off'):
      turnMonitorOn("y")

  if (time.time()-lastCapture > delay):
    if (monitor == 'on'):
      turnMonitorOff('x')

									

In der Variable „delay“ kann man einstellen, wie lange der Screen nach einer Bewegungserkennung angeschaltet bleiben soll. Es sind natürlich auch andere Pins als GPIO18 möglich (bspw. GPIO4 / Pin7)

Das Shellscript, „screen.sh“ ist dasselbe, wie im Cam-Post:

#!/bin/bash
tvstat=$(tvservice -s |grep off)
if [[ $tvstat == *off* ]]; then
TV=OFF
else
TV=ON
fi

if [ "$1" == 'on' ] && [ "$TV" == "OFF" ]; then
/usr/bin/tvservice -p;
#fbset -depth 8;
#fbset -depth 16;
chvt 2;
sleep 1
chvt 1;
chvt 2;
chvt 1;
#echo 'Switched Screen ON!'
fi
if [ "$1" == 'off' ] && [ "$TV" == "ON" ]; then
/usr/bin/tvservice -o
echo 'Switched Screen OFF!'
fi

									

Nun noch in der /boot/config.txt den Wert gpu_mem auf 32 oder gar 16 stellen, rebooten, und wir haben wieder mehr als genug RAM. Dass die CAM nun nicht mehr funktioniert, sollte jedem klar sein – aber das war ja auch Sinn und Zweck der Sache.

Tagged with:
Apr 26

Ich betreibe hier seit über einem Jahrzehnt ein paar von diesen netten günstigen Dallas-1-Wire Dingern (DS1820) an einer Linuxkiste mit samt USB-Host-Adapter im sog. „Parasite-Mode“ (Ausser GND und Data benötigt man da nichts, und kann ein paar von den Sensoren – an bspw. im Haus liegenden Telefonkabeln – abfragen).

Der USB-Host-Adapter ist eigentlich überflüssig, da der Pi das mit seinen GPIO’s von Haus aus kann. Und das ganze ist derartig trivial, dass ich es hier kurz erklären will. Man nehme:

  • den o.g. DS1820 (da gibts div. Variationen von, die sich in der Präzision unterscheiden – kosten ca. 2 Euro)
  • Einen Pi – mit Linux drauf.

 

Den 1820 wie folgt mit dem Pi verbinden:

GND auf GND // Vdd auf 3,3V // VDQ (Data) auf GPIO 4

(Hier eine Ansicht des 1820, und hier eine des GPIO-Ports vom Pi)

Dann ab auf die Shell und kurz 2 Kernel-Module nachladen:

 pi@rasbberrypi ~ $ sudo modprobe w1-gpio pullup=1
 pi@rasbberrypi ~ $ sudo modprobe w1-therm
									

Wenn alles richtig gelaufen ist, gibt es unter /sys/bus/w1/devices nun ein neues Verzeichnis mit der Unique-ID des 1820 (Die haben alle eine Art Mac-Adresse, die die einmalig macht) in dem wiederum eine Datei mit dem Namen „w1_slave“ liegt. Angenommen der 1820 hat die ID „28-0000041234567“ so heisst unsere Datei : „/sys/bus/w1/devices/28-000004593386/w1_slave“. Wenn man sich diese anzeigen lässt (zB via cat), kommt (etwas unsexy) der platte Temperaturwert als ASCII zum Vorschein.

Den hübschen wir nun noch auf, und schon haben wir einen Wert, den man weiterverarbeiten kann (snmp, website, wo auch immer):

cat /sys/bus/w1/devices/28-000004593386/w1_slave |\
grep -e 't=' | \
awk -F't=' '{print $2}'
									

Günstiger kann man keine Temperaturen messen – und erweiterbar und flexibel ist es auch noch. (Es sei denn man will unbedingt 100 Euro für das neueste, hippe, bunte Temperaturmessdevice, dass nur mit App läuft, ausgeben und die Werte alle Nasen lang in die Cloud pumpen…)

Tagged with:
preload preload preload